domingo, 28 de julio de 2019

¿Que es la Electrodinámica Cuántica? Aquí Aprenderás un Poco




La electrodinámica cuántica (QED acrónimo en inglés de Quantum Electrodynamics) es la teoría cuántica del campo electromagnético. QED describe los fenómenos que implican las partículas eléctricamente cargadas que obran recíprocamente por medio de la fuerza electromagnética.


Historia y predicciones

La QED es una de las teorías más precisas de cuantos que se crearon en el siglo XX. Es capaz de hacer predicciones de ciertas magnitudes físicas con hasta veinte cifras decimales de precisión, un resultado poco frecuente en las teorías físicas anteriores. Por esa razón la teoría fue llamada "la joya de la física". Entre sus predicciones más exactas están:

El momento magnético anómalo del electrón y del muon, para el cual la ecuación de Dirac predecía un valor de exactamente el doble del valor clásico. Para el electrón la QED predice un valor:



Shin'ichirō Tomonaga, Julian Schwinger y Richard Feynman recibieron los premios Nobel de Física de 1965 por su desarrollo, sus contribuciones que implicaban una prescripción covariante y gauge invariante para el cálculo de cantidades observables.

La técnica matemática de Feynman, basada en sus diagramas, parecía inicialmente muy diferente del enfoque teórico de campos, basado en operadores de Schwinger y Tomonaga, pero más adelante se demostró su equivalencia.

El procedimiento de renormalización para dar sentido a algunas de las predicciones infinitas de la teoría cuántica del campo también encontró su primera puesta en práctica acertada en electrodinámica cuántica.

Descripción de la teoría
La electrodinámica cuántica es una descripción detallada de la interacción entre fotones y partículas cargadas de tipo fermiónico. La teoría cuántica comparte ciertos rasgos con la descripción clásica. De acuerdo con la descripción de la óptica clásica la luz viaja sobre todos los caminos permitidos, y su interferencia determina los frentes de onda que se propagan de acuerdo con el principio de Fermat. Similarmente, en la descripción cuántica de los fotones (y los fermiones), estos pasan por cada camino posible permitido por aberturas o sistemas ópticos.


En ambos casos el observador detecta simplemente el resultado matemático de la superposición de todas las ondas consideradas a lo largo de integrales de línea. Una diferencia es que en la electrodinámica la velocidad efectiva de un fotón puede superar la velocidad de la luz en promedio.1​

Además QED fue la primera teoría cuántica del campo en la cual las dificultades para construir una descripción completa de campos y de creación y aniquilación de partículas cuánticas, fueron resueltas satisfactoriamente.

Formalismo
Matemáticamente, podemos decir que la electrodinámica cuántica tiene la estructura de una teoría de gauge abeliana, siendo el grupo de gauge asociado en grupo unitario  El campo de gauge que media la interacción entre campos de espín -1/2 con carga es el campo electromagnético.


La evolución temporal de un sistema de partículas cargadas y fotones puede ser calculada mediante un cálculo perturbativo. En concreto la comparación con los experimentos realizables frecuentemente requiere el cálculo de los elementos de la matriz S que permiten encontrar las secciones eficaces de dispersión para partícula que puede ser comparada con los resultados de los experimentos.

La electrodinámica cuántica reduce este tipo de cálculos a un desarrollo perturbativo en serie de potencias que permite encontrar con la precisión deseada esas secciones eficaces.

Cada uno de los términos perturbativos admite una representación gráfica conocida como diagrama de Feynman. De hecho, la electrodinámica cuántica fue históricamente la primera teoría donde se usaron diagramas de Feynman como ayuda en el cálculo perturbativo.


La forma de cada uno de los términos perturbativos y, por tanto, la representación gráfica asociada depende de la forma del lagrangiano que caracteriza dicha teoría .

No hay comentarios:

Publicar un comentario